Search results for "photovoltaic properties"

showing 2 items of 2 documents

A Very Low Band Gap Diketopyrrolopyrrole-Porphyrin Conjugated Polymer

2017

International audience; A porphyrin-diketopyrrolopyrrole-containing polymer (poly(porphyrin-diketopyrrolopyrrole) (PPDPP)) shows impressive molar absorption coefficients from lambda=300 to 1000 nm. The photophysical and structural properties of PPDPP have been studied. With PPDPP as the electron donor and [ 6,6]phenyl C-71 butyric acid methyl ester (PC71BM) as the electron acceptor, the bulk heterojunction polymer solar cell showed overall power conversion efficiencies of 4.18 and 6.44% for as-cast and two-step annealing processed PPDPP: PC71BM (1: 2) active layers, respectively. These results are quite impressive for porphyrin-containing polymers, especially when directly included in the p…

Materials scienceBand gapbuilding-blockporphyrinoidsElectron donorthin-film transistors02 engineering and technologyConjugated system010402 general chemistryPhotochemistry[ CHIM ] Chemical Sciences01 natural sciencesPolymer solar cellheterojunction solar-cellschemistry.chemical_compound[CHIM]Chemical Sciencessmall-moleculepolymerschemistry.chemical_classificationsemiconducting polymerscharge transferGeneral ChemistryPolymerChromophoreElectron acceptorside-chains021001 nanoscience & nanotechnologyPorphyrinphotovoltaic properties0104 chemical sciencesphotodynamic therapychemistryorganic photovoltaics0210 nano-technologyabsorptionperformanceconjugationChemPlusChem
researchProduct

Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells

2017

International audience; Advances in the synthesis and application of highly efficient polymers and small molecules over the last two decades have enabled the rapid advancement in the development of organic solar cells and photovoltaic technology as a promising alternative to conventional solar cells, based on silicon and other inorganic semiconducting materials. Among the different types of organic semiconducting materials, porphyrins and BODIPY-based small molecules and conjugated polymers attract high interest as efficient semiconducting organic materials for dye sensitized solar cells and bulk heterojunction organic solar cells. The highest power conversion efficiency exceeding 9% has be…

Materials scienceOrganic solar cellEnergy Engineering and Power Technologypower-conversion efficiency02 engineering and technologydonor materials010402 general chemistryporphyrins7. Clean energy01 natural sciencesPolymer solar cellbulk heterojunction solar cellsphotoinduced electron-transferchemistry.chemical_compoundBODIPYElectrical and Electronic Engineeringsmall-moleculelow-bandgap polymerbusiness.industryfield-effect transistors[CHIM.MATE]Chemical Sciences/Material chemistryHybrid solar cellpi-conjugated copolymersd-a021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialsphotovoltaic propertieschemistryopen-circuit voltage[ CHIM.MATE ] Chemical Sciences/Material chemistryOptoelectronicsorganic photovoltaicsBODIPY0210 nano-technologybusiness
researchProduct